
Using MPI with C# and the Common Language
Infrastructure

Jeremiah Willcock Andrew Lumsdaine Arch Robison
jewillco@osl.iu.edu lums@osl.iu.edu arch.robison@intel.com

Open Systems Laboratory KAI Software Laboratory
Pervasive Technology Laboratories Intel Corporation

Indiana University 1906 Fox Drive
Bloomington, IN 47405 Champaign, IL 61820

Tel: (812) 855-3608 Fax: (812) 855-4829 Tel: (217) 356-2288

ABSTRACT
We describe two interfaces for using the Message Passing Interface
(MPI) with the C# programming language and the Common Lan-
guage Infrastructure (CLI). The first interface provides CLI bind-
ings that closely match the original MPI library specification. The
second library presents a fully object-oriented interface to MPI and
exploits modern language features of C#. The interfaces described
here use the P/Invoke feature of the CLI to dispatch to a native im-
plementation of MPI (in our case, LAM/MPI). Performance results
using the Shared Source CLI demonstrate there is only a small per-
formance overhead incurred.

1. INTRODUCTION
Microsoft has recently announced .NET as a platform for support-
ing a wide variety of services and applications. Although at this
early stage, it is not clear that .NET will be a suitable platform for
high-performance computing, the certain ubiquity of .NET in the
near future indicates that the technology should at least be investi-
gated. Two important pieces of .NET have recently been standard-
ized by ECMA: the C# programming language [3] and the Com-
mon Language Infrastructure (CLI) [4].

As a first step in our nascent HPC .NET initiative, we have designed
and implemented interfaces to allow the Message Passing Interface
(MPI) to operate with the C# language and the CLI. Two layers of
interface are proposed: a low-level interface that is similar to the
C++ MPI bindings, and a high-level interface that exploits modern
programming language features of C#.

MPI is a standardized interface for message passing in parallel
computers [9]. It provides several useful abstractions that sim-
plify the use of distributed-memory parallel computers and clus-
ters. These include communicators, which provide an abstraction
for a set of processes (or ranks, in MPI terminology) as well as
a separated communication domain (so that messages sent within

This paper will appear as Indiana University Computer Science Department
Technical Report 570.

one communicator cannot be received within another). There
are also abstractions for various virtual network topologies, par-
allel input/output, and numerous other features used in distributed-
memory computation.

The .NET initiative consists of two main parts: the Common
Language Infrastructure and the C# programming language. The
Common Language Infrastructure (CLI) provides a standardized,
language-independent bytecode interpreter and a runtime library
that is shared among all CLI-compliant languages. The C# pro-
gramming language is a new object-oriented programming lan-
guage created by Microsoft specifically for .NET. The C# language
is similar to Java, but with new features such as delegates (similar to
function objects) and properties (conceptual fields of an object with
getter and setter methods). These features are implemented within
the CLI, but the C# language provides more convenient interfaces
to them.

2. C# FOR HIGH-PERFORMANCE COM-
PUTING

C# is an intriguing candidate for high performance computing,
because it has the key attractions of Java, yet without throwing
out some features dear to scientific programming. Like Java, C#
is a strongly-typed bounds-checked object-oriented language with
garbage collection. Thus it protects the programmer from noto-
rious pointer and memory-management errors. C# goes beyond
Java, however, by providing dense multidimensional arrays, opera-
tor overloading, an improved memory model for concurrency, and
lightweight value types. The latter are essential for efficient repre-
sentation of “small objects” such as complex numbers, coordinate
vectors, rotation matrices, etc. Similar improvements for Java have
been proposed by Java researchers [1, 13, 15, 20]. Standard C# has
these now.

Furthermore, the CLI offers pragmatic, though oft forgotten, fea-
tures for serious computing, high performance or not. The first is
simple cross-language interoperability, which permits various parts
of an application to be developed in languages appropriate for the
parts. For instance, a user interface can be written in C# and con-
nected to a numerical core written in Fortran or APL. Indeed, ven-
dors have announced plans for CLI versions of both Fortran and
APL. The “simple” is important here: the CLI standard includes a
Common Language Specification, which specifies rules for types
and interfaces to be shared across languages. Thus data structures
can be passed between languages without obscure “handles”, com-

plicated marshalling, or arcane name mangling.

The second critical feature is simple reuse of existing legacy data
structures and routines. For legacy data structures, the key fea-
tures are support for raw pointers (“unmanaged pointers” in CLI
parlance) and optional control over structure layout. For legacy
routines, the key features are the ability to make direct calls to such
routines, and the ability to specify marshalling attributes for such
calls.

Thus, C# and CLI have promise as a platform for practical object-
oriented high performance computing, by allowing multilanguage
development of new efficient type-safe garbage collected code with
a simple bridge to legacy code. The chief drawback, currently
shared by Java, is the lack of parametric polymorphism. Kennedy
and Syme have recently proposed an approach for incorporating
parametric polymorphism into the CLI [8].

3. INTERFACING .NET TO THE C MPI IN-
TERFACE

The .NET programming environment and the C# language provide
direct interfaces to existing libraries written in C and C++. These
interfaces allow a native function to be imported as a method in a
C# program. The .NET environment automatically generates code
to convert parameters between .NET formats and the platform’s
native data representations. This part of .NET is named P/Invoke.

Creating an interface to a native function involves exporting the
function from a shared library and writing a prototype for the func-
tion in C#. Assuming that the function is already exported from
a shared library, each parameter must be examined to determine
its .NET equivalent. Numbers map easily between languages, but
pointer-based structures are more difficult to convert. One option,
used in the interface to MPI, is to use pointer-sized integers (the
IntPtr type). This requires the user to explicitly fix the object to be
passed in one location and get its address. Another similar option
is to use a pointer type in C#. However, this method requires users
calling the native function to write “unsafe” C# code (explained
later), and the user must still pin the pointer-based data structure
during the native call. A last option is to use the MarshalAs at-
tribute on the parameter, which passes the location of the object
directly without any user intervention. This option is the simplest,
but it does not guarantee that the object will not be moved after the
call completes. It also requires the object to be copied to a separate
buffer in some cases, which may lead to performance problems.
Thus, the .NET interface to MPI requires explicit user pinning and
unpinning of data structures. However, the high-level interface to
MPI makes this process automatic.

As an example, a simple native function interface is given in Fig-
ure 1. This code provides a static method (named MyClass.
MyFunction) that interfaces to a native function named myfunc
(from the library mylib.so). The native function is required to
accept one integer parameter and return an integer result, and the
newly-created method will have the same interface.

However, most MPI functions are not as simple as the example
given here. In particular, MPI functions use data buffers that are
represented in C as values of type void *. There is a keyword
unsafe in C# that allows raw pointers to be used directly within
its scope, but a special compiler setting must be used to allow this.
In addition, any user code using pointers must also be compiled in
unsafe mode. However, there is a class in the standard library that

public class MyClass {
[DllImport("mylib.so", EntryPoint="myfunc")]
public static extern int MyFunction(int arg);

}

Figure 1: Basic P/Invoke example

// ... Declare and set value of some object
// obj (of any C# reference type)
GCHandle handle = GCHandle.Alloc(obj,

GCHandleType.Pinned);
IntPtr ptr = handle.AddrOfPinnedObject();
// Use value of ptr in native methods
handle.Free();

Figure 2: GCHandle object pinning example

allows access to a pointer to an object in safe mode. Objects in
.NET can be moved arbitrarily by the garbage collector, and this
must be prevented when they are in use by MPI functions. To solve
these two problems, the GCHandle class from the Common Lan-
guage Runtime is used. One use of this class is to keep an object’s
memory location fixed, as well as to obtain this location using only
safe C# code. This method of obtaining object locations also al-
lows the object to be fixed in a memory location (or “pinned”) for
any length of time, unlike the fixed keyword used to find object
locations in unsafe code. An example use of the GCHandle class is
shown in Figure 2.

In the .NET interface to MPI, the low-level bindings require the
user to explicitly pin and unpin the data buffers for MPI to use, and
thus all buffers are of C# type IntPtr (pointer-sized integer). The
high-level bindings, on the other hand, automatically pin and unpin
data buffers as needed. This is usually straightforward, but some
request types (such as nonblocking and persistent requests) have
more complicated functionality. The C# classes for MPI requests
must store the data buffer in use, and ensure that it is unpinned
when the request is completed.

Another, more MPI-specific, problem is that MPI implementations
are only required to be source-compatible. That is, a program com-
piled with one MPI implementation is not likely to work when
linked with a different implementation. In particular, MPI data
types and constants are defined in C header files, and differ be-
tween implementations. Unlike C++, C# is not able to directly im-
port these header files. There are several solutions used for these
problems. MPI constants are represented as functions in a C library,
each of which returns the value of a particular constant. These func-
tions are called once each at program startup and their results are
cached in C# variables. MPI opaque data types (which are required
by the MPI standard to be either integers or pointers) are currently
handled using a source file that is customized for each MPI imple-
mentation. These are then used as input to the code generator that
creates the low-level bindings, and inserted at the top of each file
of the high-level bindings (which are otherwise hand-written). The
one transparent MPI data type (MPI Status) is handled by creating
functions in C to create and delete objects of this type, and to access
this structure’s members. A wrapper written in C# then provides an
interface that looks more like a normal C# class.

Otherwise, interfacing the .NET environment to MPI is fairly

straightforward. Most functions take only relatively simple pa-
rameters (either integers, data buffer pointers, or MPI-defined data
types). Thus, most of the native interfaces can be easily created by
a code generator. This generator is described later in this paper.

4. LIBRARY DESIGN
The design of the C# bindings to MPI has two layers: a low-level
interface based on the C++ bindings in MPI-2 [10] (which we call
the CLI bindings), and a high-level interface based on the OOMPI
library [17] (which we call MPI.NET). The high-level interface and
low-level interface are both implemented using an internal set of
bindings that are designed to exactly match the C MPI bindings.
The low-level interface tries to follow the MPI C++ bindings, even
when those bindings conflict with common C# conventions (such
as in the names of constants). On the other hand, the high-level
interface tries to follow C# naming conventions, even though it also
attempts to allow an easy transition for programmers who already
know the C or C++ MPI bindings or the OOMPI library.

4.1 CLI (low-level) bindings
The low-level C# bindings to MPI attempt to follow the existing
C++ bindings given in the MPI-2 specification [10]. At the top level,
there is one class, named MPI. This class is not instantiable, and all
of its methods are marked as static. In the C++ MPI bindings, this
grouping of classes, functions, and constants is implemented as a
namespace, but C# namespaces can only contain classes and other
namespaces. Thus, all of the MPI constants, functions, and classes
are contained in a class instead. The low-level C# bindings try
to follow MPI naming conventions whenever possible, even when
they conflict with the preferred naming conventions for C#. This
interface also requires explicit indications of the length and MPI
data type of the data being sent or received, as the C++ bindings
require. Buffers used for data in the low-level C# bindings need to
be pinned explicitly by the user, and a pointer (represented as an
integer) to the start of the data buffer is passed to the MPI bindings.
Currently, there is only one top-level class (for the non-profiling
interface), but a second top-level class (named PMPI) is planned to
contain the profiling interface to MPI.

The implementation of this set of MPI bindings is fairly straightfor-
ward. Similar to the Notre Dame implementation of the C++ bind-
ings [18], each object just contains the underlying C representation
of the MPI object. For instance, the MPI.Datatype class contains
an instance of the C MPI Datatype type. There is one major dif-
ference, though, between the C++ bindings and the low-level C#
bindings: exceptions in C++ are thrown by a custom error handler
installed by the C++ bindings, but in C# they are thrown by an ex-
plicit check around each MPI function. This approach requires each
error-handler object to record whether it is the special ERRORS -
THROW EXCEPTIONS handler, and for better performance each ob-
ject that may have an error handler attached records whether its cur-
rent error handler is required to throw an exception. Each MPI call
is then wrapped in code that checks its return value and throws an
exception if the appropriate flag is set and the MPI function was un-
successful. The exception-throwing error handler, when installed,
sets the underlying MPI implementation to return an error code on
failure so that the exception mechanism will work correctly. This
implementation may be slightly slower than throwing an exception
through the underlying MPI implementation, but is simpler and not
dependent on features of the underlying C compiler (allowing ex-
ceptions to be thrown through C programs).

class LowlevelRoundRobin {
public static int Main(string[] args) {

MPI.Init();
MPI.Comm cw = MPI.COMM_WORLD;
uint rank = cw.Get_rank();
uint size = cw.Get_size();
uint messageLength = 10;
Console.WriteLine("Hello, I am {0} of {1}",
rank, size);

double[] data = new double[messageLength];
GCHandle dataHandle = GCHandle.Alloc(data,
GCHandleType.Pinned);

IntPtr dataPtr =
dataHandle.AddrOfPinnedObject();

if (rank == 0)
for (int i = 0; i < messageLength; ++i)
data[i] = i;

if (rank == 0)
cw.Send(dataPtr, messageLength, MPI.

DOUBLE, (rank+1) % size, 100);
cw.Recv(dataPtr, messageLength, MPI.

DOUBLE, (rank+size-1) % size,
100, MPI.STATUS_IGNORE);

if (rank != 0)
cw.Send(dataPtr, messageLength, MPI.

DOUBLE, (rank+1) % size, 100);
dataHandle.Free();
MPI.Finalize();
return 0;

}
}

Figure 3: CLI bindings C# example program

Another feature of MPI that causes implementation issues in an
object-oriented binding is that some functions accept parameters
that are arrays of MPI data types. In the object-oriented wrapper
layer, these arrays are arrays of objects, which are different from
the arrays of underlying data types that the MPI implementation
requires. In these cases, the arrays are copied into buffers of the
correct type (on input and/or output as necessary). This is the same
technique that is used by the Notre Dame C++ bindings for MPI.
Buffers of MPI.Status objects are more difficult to handle (since
this type is a structure, not just an integer or pointer), but is handled
similarly. A new array of C MPI Status objects is created, and the
information from the C# objects is copied in and out of the C array
as needed. This copying of data arrays causes the correct behavior,
but can lead to performance problems in some cases. This is one
reason that MPI.NET is built atop a set of C-level bindings, rather
than atop the lower-level C# object-oriented layer.

As an example of the use of the low-level C# bindings, a simple
“Hello, world” and round-robin program is shown in Figure 3.

The CLI bindings were created using a code generator. This gener-
ator converted a list of MPI functions into both native interfaces for
the C functions and into object-oriented wrappers that are based on
the MPI C++ bindings. The list of functions contained the C bind-
ing information as well as extra information about the C++ class
interface: the class (if any) of which each function is a member,
whether each function is static or not, and whether any output pa-
rameters of each function become return values (rather than out

parameters). This is enough information to create most of the CLI
bindings. However, some MPI classes are not just simple wrappers
of C functions, and these are written by hand. The code generator
made adding new MPI functions and fixing errors in the specifica-
tions very simple.

4.2 MPI.NET (high-level) bindings
The high-level C# bindings to MPI are based on the interface to
the OOMPI C++ library [17]. The OOMPI library provides sev-
eral useful abstractions for MPI programming, including ports and
messages. A port abstracts a source or destination for a message.
This class includes both the communicator to use for the send or
receive operation and a particular rank within the communicator to
interact with. A message (or typed buffer in MPI.NET) includes
the starting address, length, and MPI data type of a data buffer to
send or receive. The OOMPI library also provides a simplified
way to create user data types that can be sent and received using
MPI. The high-level C# bindings try to preserve these features of
OOMPI, and also create an interface that better matches the stan-
dard naming conventions used in other C# libraries. Therefore, a
constant such as MPI STATUS IGNORE becomes MPICS.Status.-
Ignore in the high-level C# bindings, and the class MPI Status
from the C++ bindings is named MPICS.Status (and so Ignore is
a static property of this class). In addition, some methods in the
C++ bindings (such as MPI::Comm::Get rank()) become proper-
ties, which have the same user interface as member variables but
are implemented as functions internally. The operator overloading
used in OOMPI for message sending and receiving (using syntax
such as port << message) will not be preserved in the C# inter-
face, since C# does not use this syntax for I/O operations.

One particular feature of the MPI.NET system deserves atten-
tion: pinnable buffers, represented by the IPinnable, IBuffer,
and ITypedBuffer interfaces. The MPI.NET interface, unlike the
lower-level interfaces presented in this paper, provides automatic
pinning and unpinning for user-defined buffers. To allow more
flexibility for users, any buffer type implementing the proper in-
terfaces can be used in MPI functions. The simplest interface is
IPinnable. This interface requires two methods and one prop-
erty: Pin() (to pin the data buffer), Unpin() (to unpin the data
buffer), and the Location property (an IntPtr to the beginning of
the buffer). Calls to the Pin() and Unpin() methods must also be
nestable. This interface does not require the buffer’s length or data
type to be provided. The IBuffer interface extends IPinnable
to add a property to obtain the length (in bytes) of the data buffer.
The interface used by most MPI calls, however, is ITypedBuffer
(equivalent to the Message class in OOMPI). This interface ex-
tends IPinnable, and also requires properties to access the MPI
data type and count of the buffer. This information then is used to
fill in several parameters in each MPI call using the buffer. This
provides a simpler programming model for library users. These in-
terfaces therefore allow the user to create custom data buffer types
which will interoperate correctly with MPI.NET’s automatic buffer
pinning.

Other than buffer management, the high-level MPI bindings for
.NET are fairly straightforward to implement. This set of bindings
uses wrappers around each MPI call to throw exceptions on fail-
ure when a user selects this mode, just like the low-level bindings
use. Similarly, the objects in the high-level bindings are usually just
containers for the underlying MPI data types. However, this level
has extra information in communicators (for knowing whether the
current error handler should throw exceptions) and requests (to en-

class HighlevelRoundRobin {
public static void Main() {

using (MPINET.Session session =
new MPINET.Session()) {

MPINET.Communicator cw =
MPINET.Communicator.World;

int rank = cw.Rank;
int size = cw.Size;
uint messageLength = 10;
Console.WriteLine("Hello, I am {0}/{1}",
rank, size);

double[] data =
new double[messageLength];

MPINET.ArrayTypedBuffer dataBuffer =
new MPINET.ArrayTypedBuffer(data);

if (rank == 0)
for (int i = 0; i<messageLength; ++i)
data[i] = i;

MPINET.Port dest = cw[(rank+1) % size];
MPINET.Port src = cw[(rank+size-1)%size];
if (rank == 0)
dest.Send(dataBuffer);

src.Recv(dataBuffer);
if (rank != 0)
dest.Send(dataBuffer);

} // End of MPI session
} // End of Main

} // End of HighlevelRoundRobin

Figure 4: MPI.NET C# example program

sure that buffers are unpinned when the request is completed). This
layer of bindings is almost all hand-written, but must of the code is
repeated between various functions. Mostly, this layer of bindings
provides a nicer user interface atop largely the same implementa-
tion strategy as the low-level bindings.

As an example of a simple program using the C# high-level bind-
ings, Figure 4 is a “Hello, world” and round-robin program.

Proposed class hierarchies for both levels of bindings are given in
Figures 5 and 6.

5. RELATED WORK
There are several interfaces to MPI from object-oriented languages
in existence. The C++ MPI bindings in the MPI-2 standard [10] and
the OOMPI library for object-oriented MPI communications [17]
have already been mentioned as major influences on the C# bind-
ings proposed by this paper. There are, however, at least two other
bindings from C++ to MPI, as well as bindings from Java, Python,
and Ruby. These interfaces provide different levels of abstraction,
as well as use the varying features of their respective languages
differently to achieve the interface to MPI.

5.1 C++ bindings
There are several interfaces from C++ to MPI. The MPI-2 stan-
dard contains a standardized set of bindings for all of the MPI
functions [10]. These interfaces tend to follow the MPI interfaces
closely, and do not try to provide a higher-level interface. However,
the C++ bindings provide classes for communicators, datatypes,
and other MPI objects. Some MPI functions then exist in C++ as

class MPI { // Low-level bindings
class Comm {

// Constructors
// Point-to-point communications
// Collective communications

}

class Datatype {
// Datatype construction operations

}

class Status {
// Constructors
public uint Source {get;}
public uint Tag {get;}
public uint Error {get;}
// Other methods

}

class Group { ... }
class Intracomm: Comm { ... }
class Cartcomm: Intracomm { ... }
class Graphcomm: Intracomm { ... }
class Intercomm: Comm { ... }

class Errhandler { ... }
class Op { ... }

}

Figure 5: Class hierarchy for CLI bindings

methods of these classes. The standard C++ bindings provide a
fairly low-level interface to MPI, and the low-level bindings for C#
proposed here are based on this set of C++ bindings.

A somewhat higher-level set of interfaces from C++ is provided
by the Object-Oriented MPI (OOMPI) library [17]. This library
provides classes similar to those in the standard C++ bindings, but
also has simplified ways to create MPI data types and send point-
to-point messages. The high-level C# bindings proposed by this
paper are based on the interfaces in OOMPI, but with some name
and structure changes to more closely match C# conventions.

Another interface from C++ to MPI is provided by MPI++ [16].
This interface is fairly low-level, and was one of the main influ-
ences for the MPI-2 C++ bindings [18]. It provides a relatively thin
layer of abstraction on top of the C MPI bindings. It is very similar
in structure to the C++ bindings.

Lastly, the mpi++ library provides another set of object-oriented
wrappers around MPI functions [7]. This library is different from
the others in that it uses C++ templates to encapsulate message in-
formation (such as the MPI data type in use, and whether the mes-
sage is blocking or non-blocking) within the type of the message
class, rather than in instance variables. This requires that these de-
cisions be made statically rather than dynamically, but the MPI C
bindings also require this (through the use of different functions for
blocking vs. non-blocking communications). The advantage is that
the same functions can be used, and the compiler can still know at
compile-time which mode is in use.

namespace MPINET { // High-level bindings
class Communicator {

// Constructors
public uint Rank {get;}
public uint Size {get;}
public static Intracommunicator World {get;}
...
public Port this[uint index] {get;}

}

class Port {
// Constructors
// Point-to-point communications

}

class Datatype {
// Datatype constructors

}

interface IPinnable { ... }
// Methods to handle pinnable buffers

interface IBuffer: IPinnable { ... }
// Untyped, pinnable byte arrays

interface ITypedBuffer: IPinnable { ... }
// Buffer with defined MPI data type, count

class ArrayTypedBuffer: ITypedBuffer { ... }
// ITypedBuffer implementation for arrays

// Other message types (single elements,
// serialized data, ...)

class Status {
// Constructors
public uint Source {get;} // Also Tag, Error
public static Status Ignore {get;}

}

class Group { ... }
class Intracommunicator: Communicator { ... }
class CartesianCommunicator: Intracommunicator

{ ... }
class GraphCommunicator: Intracommunicator

{ ... }
class Intercommunicator: Communicator { ... }
class Errhandler { ... }
class ReductionOperator { ... }

}

Figure 6: Class hierarchy for MPI.NET

5.2 Java bindings
There are also several interfaces from the Java programming lan-
guage to MPI. The mpiJava interface appears to be similar to the
C++ bindings, but allowing automatic serialization of Java objects
to be sent using MPI [2]. It also claims to be restricted to ensure
that message passing is safe (does not allow buffer overflows, etc.).
Another interface from Java to MPI, MPIJ, is more like the C++
bindings in layout [6]. This library was implemented completely in
Java, as opposed to the other libraries that are interfaces to existing
MPI implementations. It seems to require explicit indications of
what MPI data type to use for messages, but it appears to be able to
automatically determine the number of elements to send or receive.
The JavaMPI bindings, on the other hand, are based on the MPI C
bindings, which were automatically converted to Java [12]. Over-
all, there are several bindings to MPI in Java, mostly either based
on the C or C++ standard bindings.

5.3 Bindings from other languages
There are also bindings to MPI from other object-oriented lan-
guages, such as Python and Ruby. There are several Python in-
terfaces to MPI, including MPI Python [11], which appears to
be based on the C++ bindings, but with automatic serialization of
Python objects. The Scientific Python library also includes a simi-
lar interface between Python and MPI [5]. There is also a binding
from MPI to the Ruby language. Named “MPI Ruby,” this inter-
face includes automatic serialization and unserialization of Ruby
objects [14]. It otherwise appears to be like the C++ bindings in
terms of class hierarchy, etc.

6. PERFORMANCE RESULTS
A preliminary version of the C# bindings was tested to determine
the overhead of using C# rather than C for MPI message passing.
The test program was a ping-pong test in which one rank sends a
message to the other, and the other rank sends it back. The times
given are for one round-trip using this procedure. Each process
modifies the message slightly after it has been received, but this was
not found to affect the performance significantly. The test was run
between two 1.5 GHz Pentium 4 systems connected by full-duplex
100 Mbps Ethernet. Both systems were running FreeBSD 4.5. The
C compiler used was GCC 2.95.3, and the Rotor environment was
used for C# [19]. LAM/MPI 6.5.6 was used for communications
between the computers, and the communications were done us-
ing client-to-client mode and with the homogeneous-network opti-
mization (which removes the check to determine if byte-swapping
is necessary for messages).

All versions of the ping-pong test were similar: a buffer of double-
precision floating point numbers was created and initialized on rank
0. Then, rank 0 sent the buffer to rank 1, which modified one ele-
ment of it and sent it back. Rank 0 then modified another element
and passed it back to rank 1, and this process was repeated. One run
consisted of 2000 ping-pongs using this method, of which only the
last 1000 were timed in order to minimize the effect of startup and
just-in-time compilation on the results. One set of tests used the
MPI Send and MPI Recv functions for communications (blocking
mode), and another set used the persistent communication func-
tions defined by the MPI standard.

These simple tests were used because they isolate the features of
the C# bindings that directly affect performance. Applications were
not tested since the goal of this benchmark was not to test the C and
C# languages, but to test the performance of the MPI bindings to
each language. That is also why the tests were performed using

only two systems. The goal of the benchmarks was not to test net-
work latency or operating system overheads during MPI commu-
nications. Thus, the simple two-computer ping-pong test provides
an adequate measure of the C# MPI binding overheads for the send
and receive MPI functions used.

Several versions of the ping-pong test were run. The C bindings
implementation was written in C using MPI directly. The CLI
bindings version was written in C#, and used the CLI bindings
interface to MPI functions. This version uses buffers that are
pinned throughout the length of the ping-pong test. The P/Invoke
version also uses pinned buffers, and uses a set of MPI bindings
to .NET that are direct wrappers of the C MPI functions (using
the P/Invoke feature of .NET). This set of bindings does not have
classes wrapping the underlying MPI types, and is designed for the
best performance possible. The MPI.NET version was written using
a set of C# bindings that are wrappers around the interfaces used by
the P/Invoke version. The MPI.NET with explicit pinning
version uses the same set of bindings, but with explicit buffer pin-
ning by the test program (similar to the CLI bindings version).

The performance results for each implementation are given in Fig-
ures 7 and 8. As can be seen from these graphs, C# adds a sig-
nificant amount of overhead (around 50 microseconds minimum).
These overheads grow and become more erratic as the message size
increases, but they still grow slowly compared to the communica-
tion times. If explicit buffer pinning by the test program is used,
adding extra layers of wrapper classes around the MPI library does
not add a large amount of extra overhead. Each extra method call
(for instance, for bookkeeping in to ensure that buffers are pinned
during communications) adds some overhead to the communica-
tion operations. Repeatedly pinning and unpinning message buffers
for each send or receive operation caused a much larger overhead.
These overheads did not grow as much as the communication times
as message sizes increased, though, and the overheads are relatively
very small for large message sizes.

Using persistent communications with each of the three .NET in-
terfaces improved performance somewhat. Persistent communica-
tions in MPI.NET automatically keep the buffer pinned during the
lifetime of the persistent request, and so that does not cause any
overhead in this set of tests. However, the C test program using
persistent communications was slightly slower than the one using
non-persistent communications. The overheads for persistent com-
munications were below 100 microseconds for messages less than
1000 bytes. A graph of the overheads for persistent communica-
tions with each interface is given in Figure 9.

Overall, the .NET interfaces to MPI add some overhead to com-
munications, but this is not a very large part of the total message
transmission time for large messages. However, a process sending
many small messages will probably be greatly affected by them, es-
pecially if the message buffers are pinned separately for each send
and receive operation. The overheads may also cause greater prob-
lems on faster and lower-latency networks, since the language over-
heads are not likely to improve based on the network technology in
use. In all, any barriers to writing high-performance MPI programs
using C# are not likely to be due to message-passing overheads.

7. CONCLUSION
This paper has presented a design for both low-level and high-level
bindings from the C# programming language to the MPI interface
for distributed-memory parallel computing. The low-level bind-

0

200

400

600

800

1000

10 100 1000 10000 100000

C

bi
nd

in
g

ov
er

he
ad

s
(m

ic
ro

se
co

nd
s)

Message size (bytes)

MPI.NET (unpinned buffer)
MPI.NET (pinned buffer)

CLI bindings (pinned buffer)
P/Invoke (pinned buffer)

Figure 7: C# binding overheads (relative to C bindings) by message size

0.01

0.1

1

10

10 100 1000 10000 100000

C
om

m
un

ic
at

io
n

ba
nd

w
id

th
 (

m
eg

ab
yt

es
 /

se
co

nd
)

Message size (bytes)

MPI.NET unpinned buffer
MPI.NET pinned buffer

MPI.NET persistent
CLI bindings

CLI bindings persistent
P/Invoke

P/Invoke persistent
C bindings

C bindings persistent

Figure 8: C# binding bandwidths by message size

-100

-50

0

50

100

150

200

250

300

350

400

10 100 1000 10000 100000

C

bi
nd

in
g

ov
er

he
ad

s
(m

ic
ro

se
co

nd
s)

Message size (bytes)

MPI.NET
CLI bindings

P/Invoke

Figure 9: C# binding overheads (relative to C bindings) by message size – persistent communications

ings (CLI bindings) attempt to have a low overhead when com-
pared to using MPI from C or C++, and have an interface very sim-
ilar to the existing C++ bindings for MPI. The high-level bindings
(MPI.NET), on the other hand, are based on the interface of the
OOMPI library, which is a higher-level, simpler to use C++ object-
oriented interface to MPI. The high-level bindings to C# try to fol-
low the same conventions as the C# system libraries, and therefore
be easier for C# programmers to learn. Both of these interfaces,
however, try to follow MPI names for constants, data types, and
functions as much as possible. This is intended to reduce the learn-
ing curve for existing MPI programmers to move to the C# bind-
ings.

So far, most of the low-level C# bindings have been implemented.
However, most of the implementation has not yet been tested. How-
ever, the subset shown in the example programs is known to work,
and one LAM/MPI example program that uses a collective oper-
ation (MPI Reduce) has been found to work. Many fewer of the
high-level bindings have been implemented. Again, the example
program given in this paper has been found to work correctly with
the high-level bindings. The performance tests given in Section 6
were run using these implementations of the bindings.

The performance of the C# bindings has been fairly good when
buffer pinning is not included in the C# overhead times. All buffers
created by static allocation and the standard C and C++ memory
allocation primitives are pinned, and C#’s overhead is low when
this property is extended to its buffers. However, when the buffers
used from C# are not already pinned, performance is significantly
reduced. In all, the C# bindings’ performance is not affected very
much by adding more layers of abstraction. There is some abstrac-
tion penalty, though, and it appears that every extra method call

used by the C# interface library adds some overhead.

The complete set of MPI bindings to .NET will be available at
http://www.lam-mpi.org/research/mpi-net/.

8. ACKNOWLEDGMENTS
This work was supported by a grant from the Lilly Endowment and
by NSF grant ACI-9982205.

9. REFERENCES
[1] D. Bacon. Kava: A Java dialect with a uniform object model

for lightweight classes. In Proceedings of Java
Grande/ISCOPE ’01, pages 68–77, Palo Alto, CA, June
2001.

[2] B. Carpenter, G. Fox, S.-H. Ko, and S. Lim. mpiJava 1.2:
API specification. Technical Report CRPC-TR99804, Rice
University, Center for Research on Parallel Computation,
September 1999.

[3] ECMA. C# Language Specification, December 2001.
http://www.ecma.ch/ecma1/STAND/ecma-334.htm.

[4] ECMA. Common Language Infrastructure (CLI), December
2001. http://www.ecma.ch/ecma1/STAND/ecma-
335.htm.

[5] K. Hinsen. ScientificPython, January 2002. http://-
starship.python.net/crew/hinsen/scientific.html.

[6] G. Judd, M. J. Clement, Q. Snell, and V. Getov. Design
issues for efficient implementation of MPI in java. In Java
Grande, pages 58–65, 1999.

[7] D. Kafura and L. Huang. mpi++: A C++ language binding
for MPI. In Proceedings MPI developers conference, Notre
Dame, IN, June 1995. http://www.cse.nd.edu/-
mpidc95/proceedings/papers/html/huang/.

[8] A. Kennedy and D. Syme. Design and implementation of
generics for the .NET Common Language Runtime. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 1–12, Snowbird, Utah, June 2001.

[9] Message Passing Interface Forum. MPI: A Message Passing
Interface. In Proc. of Supercomputing ’93, pages 878–883.
IEEE Computer Society Press, November 1993.

[10] Message Passing Interface Forum. MPI-2, July 1997.
http://www.mpi-forum.org/.

[11] P. Miller and M. Casado. MPI Python.
http://sourceforge.net/projects/pympi/.

[12] S. Mintchev. Writing programs in JavaMPI. Technical Report
MAN-CSPE-02, School of Computer Science, University of
Westminster, October 1997.

[13] J. Moreira, S. Midkiff, and M. Gupta. A comparison of three
approaches to language, compiler, and library support for
multidimensional array in Java. In Proceedings of Java
Grande/ISCOPE ’01, pages 166–125, Palo Alto, CA, June
2001.

[14] E. Ong. MPI Ruby – a Ruby binding of MPI. http://www-
unix.mcs.anl.gov/mpi/mpi ruby.

[15] W. Pugh. The Java memory model is fatally flawed.
Concurrency: Practice and Experience, 12(6):445–455, May
2000.

[16] A. Skjellum, Z. Lu, P. V. Bangalore, and N. E. Doss. Explicit
parallel programming in C++ based on the message-passing
interface (MPI). In G. V. Wilson, editor, Parallel
Programming Using C++. MIT Press, 1996. Also available
as MSSU-EIRS-ERC-95-7.

[17] J. M. Squyres, B. C. McCandless, and A. Lumsdaine. Object
oriented MPI: A class library for the message passing
interface. In Parallel Object-Oriented Methods and
Applications (POOMA ’96), Santa Fe, 1996.

[18] J. M. Squyres, B. Saphir, and A. Lumsdaine. The design and
evolution of the MPI-2 C++ interface. In Proceedings, 1997
Internantional Conference on Scientific Computing in
Object-Oriented Parallel Computing, Lecture Notes in
Computer Science. Springer-Verlag, 1997.

[19] D. Stutz. The Microsoft shared source CLI implementation,
March 2002. http://msdn.microsoft.com/library/-
en-us/dndotnet/html/mssharsourcecli.asp.

[20] C. var Reeuwijk, F. Kuijlman, and H. J. Sips. Spar: a set of
extensions to Java for scientific computation. In Proceedings
of Java Grande/ISCOPE ’01, pages 58–67, Palo Alto, CA,
June 2001.

APPENDIX
A. CLI BINDINGS API LISTING
class MPI {

delegate void ReductionOperation(IntPtr invec, IntPtr inoutvec, int len, Datatype datatype);
delegate int AttributeCopyFunction(Comm oldcomm, int comm_keyval, object extra_state, IntPtr

attribute_val_in, IntPtr attribute_val_out, out bool flag);
delegate int AttributeDeleteFunction(Comm comm, int comm_keyval, IntPtr attribute_val,

object extra_state);
delegate void ErrorHandlerFunction(Comm comm, ref int errorcode);

static void Abort([In] Comm comm, [In] int errorcode);
static void Buffer_attach([In] byte[] buffer, [In] int Size);
static IntPtr Buffer_detach([Out] out int Size);
static void Compute_dims([In] int nnodes, [In] int ndims, [In][Out] int[] dims);
static int Error_class([In] int errorcode);
static void Finalize();
static IntPtr Get_address([In] IntPtr location);
static void Get_error_string([In] int errorcode, [Out] byte[] str, [Out] out int resultlen);
static void Get_processor_name([In] byte[] name, [Out] out int resultlen);
static void Init();
static bool Initialized();
static double Wtick();
static double Wtime();

class Status {
uint Source {get;}
uint Tag {get;}
uint Error {get;}

static Status CreateFromMPIStatus(IntPtr mpiStaticPtr);
int Get_count([In] Datatype datatype);
int Get_elements([In] Datatype datatype);
bool Test_cancelled();

}

class StatusArray {
readonly int Length;
StatusArray(int len);
˜StatusArray();
static implicit operator IntPtr(StatusArray sa);
Status this[int index] {get;}

}

class Comm: ICloneable {
void Bsend([In] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int dest, [In]

int tag);
Prequest Bsend_init([In] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int

destorsrc, [In] int tag);
virtual object Clone();
static int Compare([In] Comm comm1, [In] Comm comm2);
static Errhandler Create_errhandler([In] ErrorHandlerFunction function);
static int Create_keyval([In] AttributeCopyFunction copy_fn, [In] AttributeDeleteFunction

delete_fn, [In] object extra_state);
void Delete_attr([In] int keyval);
Comm Dup();
void Free();
static void Free_keyval([In][Out] ref int keyval);
bool Get_attr([In] int keyval, [In][Out] ref object attribute_val);
Errhandler Get_errhandler();
Group Get_group();
int Get_rank();
int Get_size();
int Get_topology();

Request Ibsend([In] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int
destorsrc, [In] int tag);

bool Iprobe([In] int source, [In] int tag);
bool Iprobe([In] int source, [In] int tag, [Out] Status status);
Request Irecv([Out] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int

destorsrc, [In] int tag);
Request Irsend([In] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int

destorsrc, [In] int tag);
bool Is_inter();
Request Isend([In] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int destorsrc,

[In] int tag);
Request Issend([In] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int

destorsrc, [In] int tag);
void Probe([In] int source, [In] int tag);
void Probe([In] int source, [In] int tag, [Out] Status status);
void Recv([Out] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int source, [In]

int tag);
void Recv([Out] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int source, [In]

int tag, [Out] Status status);
Prequest Recv_init([Out] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int

destorsrc, [In] int tag);
void Rsend([In] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int dest, [In]

int tag);
Prequest Rsend_init([In] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int

destorsrc, [In] int tag);
void Send([In] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int dest, [In] int

tag);
Prequest Send_init([In] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int

destorsrc, [In] int tag);
void Sendrecv([In] IntPtr sendbuf, [In] int sendcount, [In] Datatype sendtype, [In] int

dest, [In] int sendtag, [Out] IntPtr recvbuf, [In] int recvcount, [In] Datatype recvtype, [In]
int source, [In] int recvtag);

void Sendrecv([In] IntPtr sendbuf, [In] int sendcount, [In] Datatype sendtype, [In] int
dest, [In] int sendtag, [Out] IntPtr recvbuf, [In] int recvcount, [In] Datatype recvtype, [In]
int source, [In] int recvtag, [Out] Status status);

void Sendrecv_replace([In][Out] IntPtr buf, [In] int count, [In] Datatype datatype, [In]
int dest, [In] int sendtag, [In] int source, [In] int recvtag);

void Sendrecv_replace([In][Out] IntPtr buf, [In] int count, [In] Datatype datatype, [In]
int dest, [In] int sendtag, [In] int source, [In] int recvtag, [Out] Status status);

void Set_attr([In] int keyval, [In] object attribute_val);
void Set_errhandler([In] Errhandler errhandler);
void Ssend([In] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int dest, [In]

int tag);
Prequest Ssend_init([In] IntPtr buf, [In] int count, [In] Datatype datatype, [In] int

destorsrc, [In] int tag);
}

class Intracomm: Comm {
void Allgather([In] IntPtr sendbuf, [In] int sendcount, [In] Datatype sendtype, [Out]

IntPtr recvbuf, [In] int recvcount, [In] Datatype recvtype);
void Allgatherv([In] IntPtr sendbuf, [In] int sendcount, [In] Datatype sendtype, [Out]

IntPtr recvbuf, [In] int[] recvcounts, [In] int[] displs, [In] Datatype recvtype);
void Allreduce([In] IntPtr sendbuf, [Out] IntPtr recvbuf, [In] int count, [In] Datatype

datatype, [In] Op op);
void Alltoall([In] IntPtr sendbuf, [In] int sendcount, [In] Datatype sendtype, [Out]

IntPtr recvbuf, [In] int recvcount, [In] Datatype recvtype);
void Alltoallv([In] IntPtr sendbuf, [In] int[] sendcounts, [In] int[] sdispls, [In]

Datatype sendtype, [Out] IntPtr recvbuf, [In] int[] recvcounts, [In] int[] rdispls, [In]
Datatype recvtype);

void Barrier();
void Bcast([In][Out] IntPtr buffer, [In] int count, [In] Datatype datatype, [In] int root);
int Cart_map([In] int ndims, [In] int[] dims, [In] bool[] periods);
override object Clone();

Intracomm Create([In] Group group);
Cartcomm Create_cart([In] int ndims, [In] int[] dims, [In] bool[] periods, [In] bool

reorder);
Graphcomm Create_graph([In] int nnodes, [In] int[] index, [In] int[] edges, [In] bool

reorder);
Intercomm Create_intercomm([In] int local_leader, [In] Intracomm peer_comm, [In] int

remote_leader, [In] int tag);
new Intracomm Dup();
void Gather([In] IntPtr sendbuf, [In] int sendcount, [In] Datatype sendtype, [Out] IntPtr

recvbuf, [In] int recvcount, [In] Datatype recvtype, [In] int root);
void Gatherv([In] IntPtr sendbuf, [In] int sendcount, [In] Datatype sendtype, [Out] IntPtr

recvbuf, [In] int[] recvcounts, [In] int[] displs, [In] Datatype recvtype, [In] int root);
int Graph_map([In] int nnodes, [In] int[] index, [In] int[] edges);
void Reduce([In] IntPtr sendbuf, [Out] IntPtr recvbuf, [In] int count, [In] Datatype

datatype, [In] Op op, [In] int root);
void Reduce_scatter([In] IntPtr sendbuf, [Out] IntPtr recvbuf, [In] int[] recvcounts, [In]

Datatype datatype, [In] Op op);
void Scan([In] IntPtr sendbuf, [Out] IntPtr recvbuf, [In] int count, [In] Datatype

datatype, [In] Op op);
void Scatter([In] IntPtr sendbuf, [In] int sendcount, [In] Datatype sendtype, [Out] IntPtr

recvbuf, [In] int recvcount, [In] Datatype recvtype, [In] int root);
void Scatterv([In] IntPtr sendbuf, [In] int[] sendcounts, [In] int[] displs, [In] Datatype

sendtype, [Out] IntPtr recvbuf, [In] int recvcount, [In] Datatype recvtype, [In] int root);
Intracomm Split([In] int color, [In] int key);

}

class Graphcomm: Intracomm {
override object Clone();
new Graphcomm Dup();
void Get_dims([Out] out int nnodes, [Out] out int nedges);
void Get_neighbors([In] int rank, [In] int maxneighbors, [Out] int[] neighbors);
int Get_neighbors_count([In] int rank);
void Get_topo([In] int maxindex, [In] int maxedges, [Out] int[] index, [Out] int[] edges);

}

class Cartcomm: Intracomm {
override object Clone();
new Graphcomm Dup();
int Get_cart_rank([In] int[] coords);
void Get_coords([In] int rank, [In] int maxdims, [Out] int[] coords);
int Get_dim();
void Get_topo([In] int maxdims, [Out] int[] dims, [Out] bool[] periods, [Out] int[]

coords);
void Shift([In] int direction, [In] int disp, [Out] out int rank_source, [Out] out int

rank_dest);
Cartcomm Sub([In] bool[] remain_dims);

}

class Intercomm: Comm {
override object Clone();
new Graphcomm Dup();
Group Get_remote_group();
int Get_remote_size();
Intracomm Merge([In] bool high);

}

class Datatype {
Datatype Create_contiguous([In] int count);
Datatype Create_hindexed([In] int count, [In] int[] blocklengths, [In] int[]

displacements);
Datatype Create_hvector([In] int count, [In] int blocklength, [In] int stride);
Datatype Create_indexed([In] int count, [In] int[] blocklengths, [In] int[] displacements);
static Datatype Create_struct([In] int count, [In] int[] blocklengths, [In] int[]

displacements, [In] Datatype[] types);
Datatype Create_vector([In] int count, [In] int blocklength, [In] int stride);
void Pack([In] IntPtr inbuf, [In] int incount, [Out] IntPtr outbuf, [In] int outsize,

[In][Out] ref int position, [In] Comm comm);
int Pack_size([In] int incount, [In] Comm comm);
void Type_commit();
void Type_free();
int Type_size();
void Unpack([In] IntPtr inbuf, [In] int insize, [In][Out] ref int position, [Out] IntPtr

outbuf, [In] int outcount, [In] Comm comm);
}

class Errhandler {
void Free();

}

class Exception: System.Exception {
readonly int ErrorCode;
Exception(int ec);
int Get_error_code();
int Get_error_class();
string Get_error_string();

}

class Group {
static int Compare([In] Group group1, [In] Group group2);
static Group Difference([In] Group group1, [In] Group group2);
Group Excl([In] int n, [In] int[] ranks);
void Free();
Group Incl([In] int n, [In] int[] ranks);
static Group Intersection([In] Group group1, [In] Group group2);
Group Range_excl([In] int n, [In] int[] ranges);
Group Range_incl([In] int n, [In] int[] ranges);
int Rank();
int Size();
static void Translate_ranks([In] Group group1, [In] int n, [In] int[] ranks1, [In] Group

group2, [Out] int[] ranks2);
static Group Union([In] Group group1, [In] Group group2);

}

class Op {
void Free();
Op Init([In] ReductionOperation function, [In] bool commute);

}

class Request {
void Cancel();
void Free();
bool Test();
bool Test([Out] Status status);
static bool Testall([In] int count, [In][Out] Request[] requests);
static bool Testall([In] int count, [In][Out] Request[] requests, [Out] Status[] statuses);
static bool Testany([In] int count, [In][Out] Request[] requests, [Out] out int index);
static bool Testany([In] int count, [In][Out] Request[] requests, [Out] out int index,

[Out] Status status);
static int Testsome([In] int incount, [In][Out] Request[] requests, [Out] int[] indices);
static int Testsome([In] int incount, [In][Out] Request[] requests, [Out] int[] indices,

[Out] Status[] statuses);
void Wait();
void Wait([Out] Status status);
static void Waitall([In] int count, [In][Out] Request[] requests);
static void Waitall([In] int count, [In][Out] Request[] requests, [Out] Status[] statuses);
static int Waitany([In] int count, [In][Out] Request[] requests);

static int Waitany([In] int count, [In][Out] Request[] requests, [Out] Status status);
static int Waitsome([In] int incount, [In][Out] Request[] requests, [Out] int[] indices);
static int Waitsome([In] int incount, [In][Out] Request[] requests, [Out] int[] indices,

[Out] Status[] statuses);
}

class Prequest {
void Start();
static void Startall([In] int count, [In][Out] Prequest[] requests);

}
}

B. MPI.NET API LISTING
using System;
using System.Runtime.InteropServices;
using System.Collections;

namespace IU_OSL {
namespace MPICS {
class ArrayTypedBuffer: ITypedBuffer {
Datatype Type {get;}
int Count {get;}
IntPtr Location {get;}

ArrayTypedBuffer(int[] buf);
ArrayTypedBuffer(int[] buf, int len);
ArrayTypedBuffer(double[] buf);
ArrayTypedBuffer(double[] buf, int len);

void Pin();

void Unpin();
}

interface IPinnable {
void Pin(); // Must be nestable
void Unpin();
IntPtr Location {get;}

}

interface IBuffer: IPinnable {
int Length {get;}

}

interface ITypedBuffer: IPinnable {
int Count {get;}
Datatype Type {get;}

}

class Communicator : IDisposable, IObjectWithErrorHandler {
readonly MPI_Comm MPICommunicator;

static readonly Intracommunicator World;

Communicator(MPI_Comm mpiComm);
void Dispose();
Port this[int r] {get;}
Port NullProcess {get;}
void Sendrecv(ITypedBuffer sendbuf, int destrank, int sendtag, ITypedBuffer recvbuf, int

srcrank, int recvtag, Status st);
void Sendrecv(ITypedBuffer sendbuf, int destrank, int sendtag, ITypedBuffer recvbuf, int

srcrank, int recvtag);
void Sendrecv_replace(ITypedBuffer buf, int destrank, int sendtag, int srcrank, int

recvtag, Status st);
void Sendrecv_replace(ITypedBuffer buf, int destrank, int sendtag, int srcrank, int

recvtag);
Group CommunicatorGroup {get;}
int Rank {get;}
int Size {get;}
static int Compare(Communicator a, Communicator b);
bool IsIntercommunicator {get;}
int Topology {get;}
Errhandler ErrorHandler {get; set;}

}

class Datatype : IDisposable {
MPI_Datatype MPIDatatype {get;}

int Extent {get;}
int LowerBound {get;}
int UpperBound {get;}
int Size {get;}

Datatype(MPI_Datatype datatype);
void Dispose();
˜Datatype();
Datatype CreateContiguous(int count);
Datatype CreateVector(int count, int blocklength, int stride);
Datatype CreateHVector(int count, int blocklength, int stride);
Datatype CreateIndexed(int[] blocklengths, int[] displacements);
Datatype CreateHIndexed(int[] blocklengths, int[] displacements);
static Datatype CreateStruct(int[] blocklengths, int[] displacements, Datatype[] types);
void Commit();

static readonly Datatype Char;
static readonly Datatype Short;
static readonly Datatype Int;
static readonly Datatype Long;
static readonly Datatype UnsignedChar;
static readonly Datatype UnsignedInt;
static readonly Datatype UnsignedLong;
static readonly Datatype Float;
static readonly Datatype Double;
static readonly Datatype LongDouble;
static readonly Datatype Byte;
static readonly Datatype Packed;
static readonly Datatype FloatInt;
static readonly Datatype DoubleInt;
static readonly Datatype LongInt;
static readonly Datatype TwoInt;
static readonly Datatype ShortInt;
static readonly Datatype LongDoubleInt;
static readonly Datatype LongLong;
static readonly Datatype UB;
static readonly Datatype LB;
static readonly Datatype Null;

}

class Errhandler : IDisposable {
readonly MPI_Errhandler MPIErrhandler;
readonly bool IsErrorsThrowExceptions;

Errhandler(MPI_Errhandler eh);

void Dispose();

delegate void CommunicatorErrorHandlerFunction(Communicator comm, ref int errorcode);

static readonly Errhandler ErrorsThrowExceptions;
static readonly Errhandler ErrorsReturn;
static readonly Errhandler ErrorsAreFatal;
static readonly Errhandler Null;

}

class Exception : System.Exception {
readonly int ErrorCode;
int ErrorClass {get;}
string ErrorString {get;}

}

class Group : IDisposable {
readonly MPI_Group MPIGroup;

Group(MPI_Group g);
void Dispose();
int Size {get;}
int Rank {get;}
void TranslateRanks(Group g1, int[] ranks1, Group g2, int[] ranks2);
int Compare(Group g1, Group g2);
static Group operator&(Group g1, Group g2);
static Group operator|(Group g1, Group g2);
static Group operator-(Group g1, Group g2);
Group Incl(int[] ranks);
Group Excl(int[] ranks);
Group RangeIncl(int[] ranges);
Group RangeExcl(int[] ranges);
static readonly Group Null;
static readonly Group Empty;

class Intracommunicator: Communicator {
// To be filled in

}

class Port : IDisposable {
readonly Communicator Comm;
readonly int Peer;

Port(Communicator comm, int peer);
void Dispose();
void Send(ITypedBuffer buf, int tag);
void Send(ITypedBuffer buf);
void Recv(ITypedBuffer buf, int tag);
void Recv(ITypedBuffer buf, int tag, Status st);
void Recv(ITypedBuffer buf);
void Recv(ITypedBuffer buf, Status st);
void Bsend(ITypedBuffer buf, int tag);
void Bsend(ITypedBuffer buf);
void Ssend(ITypedBuffer buf, int tag);
void Ssend(ITypedBuffer buf);
void Rsend(ITypedBuffer buf, int tag);
void Rsend(ITypedBuffer buf);
Request Isend(ITypedBuffer buf, int tag);
Request Isend(ITypedBuffer buf);
PersistentRequest SendInit(ITypedBuffer buf, int tag);
PersistentRequest SendInit(ITypedBuffer buf);
PersistentRequest RecvInit(ITypedBuffer buf, int tag);
PersistentRequest RecvInit(ITypedBuffer buf);

}

class Request : IDisposable {
MPI_Request MPIRequest {get;}
virtual void Dispose();
bool Completed {get;}
void Wait();
void Wait(Status st);
bool Test();
bool Test(Status st);
void Cancel();

}

class PersistentRequest : Request {
override void Dispose();
void Start();

}

class Session : IDisposable {
Session();
void Dispose();
bool IsInitialized {get;}
void Abort(Communicator comm, int errorcode);

}

class Status : IDisposable {
Status();
void Dispose();
˜Status();
int Source {get;}
int Tag {get;}
int Error {get;}
static readonly Status Ignore;

}
}

}

